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Abstract

This article discusses design ideas useful in the development of Markov chain Monte Carlo (MCMC) software.
Goals of the design are to facilitate analysis of as many statistical models as possible, and to enable users
to experiment with different MCMC algorithms as a research tool. These ideas have been used in YADAS,
a system written in the Java language, but are also applicable in other object-oriented languages.

1 Introduction

Bayesian analysis is now a practical option for most statistical problems, and most of these require Markov

chain Monte Carlo algorithms (MCMC). Tools and ideas that assist researchers in quickly developing MCMC

software are of great importance: indeed, in his Journal of the American Statistical Association vignette

about Bayesian analysis, Berger (2000) notes that “creation [of ‘automatic’ Bayesian software] should... be

a high priority for the profession.” In this paper I discuss lessons I have learned about design of MCMC

software while developing YADAS (Graves, 2003). Goals of the software design discussed here include

extensibility, both with respect to new models and new types of MCMC algorithms, and code reuse so that

common pieces of analyses can be easily replicated. (Berger (2000) points out that the large class of problems

amenable to Bayesian analysis and the recent, continuing expansion of the class of available computational

techniques are two factors militating against the development of general Bayesian computational software,

although they are both major strengths of the paradigm.) More specific goals include making it easy to make

small changes to analyses already performed, including to prior parameters, but also distributional forms,

link functions, and so forth. The design aims to give the user the option of either ignoring the details of

algorithm implementation and obtaining adequate performance in many problems, or of creating arbitrary

new algorithms when more careful tailoring is productive. The design utilizes principles of object-oriented
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design that formalize the commonalities between similar operations and facilitate extensions that follow these

commonalities.

The remainder of this section gives further motivation for the design based on the great generality of the

family of Metropolis-Hastings algorithms, followed by introduction of terminology, especially that used in

object–oriented programming. Section 2 contains definitions of the key components of the software design.

Section 3 features two example problems that illustrate the design in action. Section 4 discusses related

software efforts. An appendix includes an example YADAS code listing and discusses how to learn more

about YADAS.

1.1 The Metropolis–Hastings algorithm

The generality and easy applicability of the Metropolis–Hastings algorithm motivates many of the design

decisions made here. Suppose that one wishes to sample from the unnormalized posterior density π(θ) for

θ ∈ Θ. For θ ∈ Θ, let T (·|θ) be a probability density function on Θ. The Metropolis–Hastings algorithm can

be defined as follows. Let θ0 ∈ Θ be the initial value. Then, for k = 1, . . . , N ,

1. Propose a new value θ′ by sampling from the density T (·|θk−1).

2. Accept the new value with probability

min
{

1,
π(θ′)

π(θk−1)
T (θk−1|θ′)
T (θ′|θk−1)

}
.

If the new value is accepted, set θk = θ′, otherwise set θk = θk−1.

3. Return to Step 1.

This algorithm can be implemented in great generality provided that it is possible to

1. Calculate ratios π(θ′)/π(θ);

2. Sample from the transition density T (·|θ);

3. Calculate ratios T (θ|θ′)/T (θ′|θ). For some special cases this ratio is always 1, in which case the

algorithm is called the Metropolis algorithm.

Furthermore, one can construct algorithms based on several choices of Tj(·|θ)(j = 1, . . . , J) by cycling through

proposals based on T1, . . . , TJ . An important example is variable-at-a-time Metropolis: if θ = (θ1, . . . , θJ )
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with each θj ∈ R, one can let

Tj(θ′|θ) = (2πsj)−1/2 exp{−(θ′j − θj)2/(2s2
j )}I{θ′i = θi, i #= j},

i.e., Tj lets θ′j ∼ N(θj , s2
j ). Under easily achievable conditions, algorithms based on these steps will pro-

duce samples from distributions that converge to π. See Chib and Greenberg (1995), and Tierney (1994).

Metropolis et al (1953) and Hastings (1970) are important historical papers about the Metropolis algo-

rithm. As an example of the generality of these algorithms, Gibbs sampling is a special case: if one lets

Tj(θ′|θ) = π(θ1,...,θj−1,θ′
j ,θj+1,...,θJ )R

π(θ1,...,θj−1,λ,θj+1,...,θJ )dλ
I{θ′i = θi, i #= j} be defined by the conditional distribution of θj given

θ1, . . . , θj−1, θj+1, . . . , θJ , then the acceptance probability is always 1. Most often it is impractical to sample

from the conditional distributions or even to evaluate them. Even when it is possible, there are costs asso-

ciated with coupling the proposal distributions Tj with the posterior distribution π: if the model changes,

the code to analyze it will change, whereas more versatile choices of Tj (perhaps with some tuning done

behind the scenes) imply software that is easier to change. The Metropolis–Hastings framework also in-

cludes reversible jump MCMC (Green, 1995), and versions of data augmentation (Tanner and Wong, 1987),

simulated tempering (Geyer and Thompson, 1995), and other algorithms. This approach is powerful in part

because it generalizes readily to simultaneous updates of multiple correlated parameters.

In large part, the purpose of the software design described here is to help the user define π and appropriate

choices of Tj .

1.2 Conventions and terminology

When a concept needs a name, this article will use the names used in YADAS, except where noted. As much

as possible, when discussing the software design, I use the terminology of Java to be concrete. For example,

the term array refers to a one–dimensional, fixed–length structure for storing multiple values of the same

type. Two-dimensional arrays are arrays of arrays, with no implication that the inner arrays are of the same

length (the outer array can be ragged). Array indexing starts at zero, unlike in S.

This design utilizes object-oriented ideas: it has been implemented in Java, but the ideas can also be

applied in other object-oriented environments.

Object-oriented programming consists of manipulations of objects. The abstract description of like objects

is referred to as a class; a specific object used in a program that is an example of a class is known as an

instance of that class. (A class is a sort of template, and instances are things that follow that template.)

Classes are like data structures in non-object-oriented programming in that they can contain several pieces

of data of different forms, but they also can contain methods, a particular type of procedure or function that
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is associated with a specific class. A method may return data of some type or an object, or it may not,

in which case its return type is said to be void. A special type of method is a constructor : its behavior

is to create a new instance of the class. In Java and in this paper, the syntax for calling a method f on

an object x is x.f(), possibly with arguments inside the parentheses. Sometimes f can be called with

different numbers of different types of arguments; these different argument possibilities are called signatures

of the method f. Object-oriented systems also have class hierarchies: if a class is built based on an existing

class to contain all the same functionality, perhaps with some of it reimplemented, and perhaps with some

additional functionality, it is known as a subclass or derived class of the first class (the superclass or base

class) or is said to inherit from that class; one often sees extensive diagrams of inheritance structure for

large systems. Inheritance is a powerful way to reuse code, as new classes that are similar to old classes can

be implemented with only the differences requiring new code. The class hierarchy described in the present

paper is actually fairly simple; most of the structure is represented using interfaces (this is the Java term;

the term protocol is more generally used in other object-oriented contexts). Broadly speaking, an interface is

a definition of how objects conforming to that interface can be interacted with; more concretely, an interface

is a collection of names of methods, and a class is said to implement the interface if it contains definitions for

all those methods. (Some object-oriented languages, including C++, define interfaces using abstract classes

and pure virtual functions.) In Java, each class inherits from exactly one superclass, but it may implement

arbitrarily many interfaces. The interface leads to one of the most important object-oriented programming

techniques: one can construct an array or other collection of objects that implement the same interface, and

then loop over them, calling methods that belong to the interface, which can lead to somewhat different

appropriate behavior for each object. The key concepts of the design described here are predominantly

interfaces, including the interface MCMCBond, which defines terms in posterior distributions, and MCMCUpdate,

which defines steps in MCMC algorithms.

Many good introductory books on Java and object-oriented programming exist; a favorite is Eckel (1998).

2 Design ideas

This section presents the key elements of the proposed software design. They fall in five categories: inputs

(such as data), entities whose posterior distribution is desired, terms in the posterior distribution, steps in

the MCMC algorithm, and outputs. Each of these is organized by an interface.

Interface definitions here use Java syntax. A generic interface definition is:

interface interface-name {

return-type method-name (arg1-type arg1-name, arg2-type arg2-name, ...);
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}

where return-type, arg1-type, and so on can be, for example, double for a real number, int[] for an

array of integers, String[][] for an array of arrays of strings, or void for no return value. There can be

zero or more arguments. For example, the interface LogDensity, discussed in §2.3.1, consists of the single

method compute, which accepts a two-dimensional array (matrix) of inputs and returns a real number:

interface LogDensity {

double compute (double[][] args);

}

I will colloquially refer to an object implementing, for example, the LogDensity interface as “a LogDensity”.

2.1 Data and other inputs

The interface MCMCInput is used to define inputs to the MCMC analysis, including data and covariates,

constants such as fixed prior parameters, and initial values for parameters. The two key methods are r and

i for handling real- and integer-valued inputs respectively:

interface MCMCInput {

public double[] r(String name);

public int[] i(String name);

}

(If reals and integers can be handled together, as in S, only one of these is needed.) An example of a class

that implements the interface is DataFrame, intended to be similar to the class of the same name in S. For

example, if d is a DataFrame, d.r("y") returns an array of real numbers associated with the name “y”.

DataFrame objects read in the values of all their variables from files, and all variables have same length but

may have different types. ScalarFrame is another class implementing MCMCInput but is restricted to scalar

variables; it exists to improve readability of input files. Potentially, new classes could handle streaming data.

The MCMCInput architecture helps write analysis code that can be reused with different data sets: only

the MCMCInput objects need to be changed.
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2.2 The MCMCNode Interface

The MCMC algorithm’s purpose is to sample from the joint posterior distribution of a number of entities.

These entities will often be represented as nodes in a graphical model, and in this design are stored in objects

that implement the MCMCNode interface. The most obvious example of an MCMCNode is an unknown parameter

possibly of more than one element, but nodes may also include augmented data, parameter expansions, or

control variables such as temperature in simulated tempering. MCMCNode objects may also contain data

that are never updated: this may be useful for many reasons, such as anticipating another analysis where

something that is now constant will become unknown, or it may be convenient to store observed and missing,

imputed data together. The interface definition is

interface MCMCNode {

double[] getValue ();

void setValue (double[] newvalue);

void addBond (MCMCBond bond, int which);

MCMCBond[] relevantBonds ();

}

The method getValue() returns the value of the node at the current stage of the algorithm, while

the method setValue() changes the value of the node to a new value (it may be useful to also have a

method that changes a single element of the value). The method setValue() is called when an update step

in the algorithm decides to change the node value. Another important behavior of a node is to help the

software compute the unnormalized posterior distribution: to do this, it must communicate which terms of

the posterior contain it. The MCMCMBond interface will be discussed later: it defines terms in the posterior

distribution, which are relationships between nodes. In the MCMCNode interface, the addBond method is called

when a new posterior term is defined, and each node in the bond makes a note that it belongs to that bond,

and also which role it plays in the bond (encoded in the integer which, an argument to the addBond method).

For example, if three parameters y, µ, and σ are related by y ∼ N(µ,σ2), the integer which may be 0 for the

data parameter y, 1 for the mean parameter µ, and 2 for the standard deviation parameter σ. Later, while

the algorithm is running, the method relevantBonds() can be called, it will return the array of bonds that

feature the node, and the algorithm can calculate the change in posterior density that would result from

changing the value of the node.

In YADAS, the main example of an MCMCNode is the MCMCParameter class, and it makes no distinction

between unknown parameters, augmented or imputed data. An MCMCParameter can be multivariate if

desired; for instance in an analysis of variance problem with group-dependent means, all the group means

can be stored in the same parameter. More generally, several regression parameters can be stored together.
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The MCMCParameter class has much more functionality than is required by virtue of being a node: in

particular, it implements the MCMCUpdate interface (a parameter “knows how to update itself”): see §2.4.

2.3 Bonds: terms in the posterior distribution

The statistical model (unnormalized posterior distribution) to be analyzed is defined to be a sum of terms

(“bonds”) implementing the MCMCBond interface (if, as in YADAS, posterior computations are done on the

log scale; otherwise it can be thought of as a product). Conceptually, to compute the unnormalized posterior

distribution at a given value of the nodes, one loops over the bonds, computing each one, and adding the

results. (The term “bond” arises from a chemistry interpretation of a graphical model, where each parameter

is identified with an atom.) The interface definition for MCMCBond is as follows.

interface MCMCBond {

double compute (several signatures);

Collection getNodeList ();

}

Here Collection refers to a generic container that holds multiple objects. The method getNodeList()

returns a list of the nodes required to define the bond.

The compute() method(s) can be defined and implemented in different ways depending on developer

choice. There are a number of ways of thinking about how bonds compute themselves. Most obviously, a

term in the posterior distribution is a function b of the nodes θ, so the compute() method could take θ as

its argument and return b(θ). The YADAS approach is that b is most often needed in Metropolis-Hastings

acceptance probability calculations in which one requires log{b(θ′)}− log{b(θ)}, where θ is the current value

and θ′ is some perturbation. (When one requires the posterior density itself rather than ratios, this approach

is a bit unnatural.) For this reason the compute method has several signatures corresponding to different

ways of describing the perturbation. For example, if a bond depends on two parameters, µ = (µi : 0 ≤ i < 5)

and σ, and if the perturbation under consideration changes µ2 to µ′
2, the arguments to compute() must

communicate that the second element of the zeroth parameter (µ) is the one potentially changing to µ′
2.

One important capability that should be preserved for efficiency reasons, is that the bond should store its

current value b(θ) rather than having to recalculate it.

A goal of this design is to make it possible to handle any unnormalized posterior distribution, and as

described, the MCMCBond interface has not yet ruled this out: any unnormalized posterior distribution could

be calculated inside a single bond. However, it also does not contain any support for the types of bonds

that are commonly found in statistical analyses. It is the responsibility of the classes that implement the
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MCMCBond interface to make it easier for users to describe commonly occurring bonds, as well as novel bonds

with some commonly occurring aspects. In this design, one class that implements the MCMCBond interface,

and thus far accounts for nearly all bonds, is the BasicMCMCBond class. This class is very versatile and is

based on the observation that there are only a few different commonly used probability density functions:

Gaussian, Gamma, Poisson, Binomial, Beta, StudentT, and so forth, and multivariate versions of some of

these. The richness of the family of potential data analyses comes from the variety of ways of selecting

arguments for these density functions. A BasicMCMCBond, then, consists of an array of nodes, an array of

objects implementing the MCMCArgument interface, which are essentially functions that convert nodes into

arguments for a density function, and a LogDensity, which takes the output of the MCMCArgument objects,

runs it through the log density function, and returns the scalar value of the bond.

2.3.1 The LogDensity Interface

LogDensity is an interface (actually called Likelihood in YADAS), consisting of a single method,

interface LogDensity {

double compute (double[][] args);

}

LogDensity objects are simply functions that calculate logs of probability density (or mass) functions. They

are best understood through an example: the Gaussian class, which implements the LogDensity interface,

expects as the contents of its args an array of data yi, 0 ≤ i < n, an array of means µi, 0 ≤ i < n, and an

array of standard deviations σi, 0 ≤ i < n, and its compute() method calculates

n−1∑

i=0

{− log σi − (yi − µi)2/2σ2
i }.

Note that this description handles several cases: the µi could all be different, could all be equal to a common

µ, or anything in between; σi could be a constant, all equal to σ, or equal to λ|µi| for some known or

unknown parameter λ > 0; and the yi could be data, unknown parameters, or a mixture (i.e., some observed

data and some missing data); µi and yi−1 could be the same in a random walk model; µi could be
∑

j xijβj

for some regression coefficients βj , and there are many other possibilities. (A cost of this versatility is a

bit of computational inefficiency; the − log σi term is computed even if σi is not being updated, in which

case most Bayesian statisticians would think of this term as a constant.) Because of this versatility, one can

do many analyses with only a small number of LogDensity objects. Also note that if an analyst wants to

change a distributional form from, say, Gaussian to StudentT, it is conceptually not much more difficult

than changing the word Gaussian to StudentT in the code (except that the analyst must also define an
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array of degrees of freedom parameters for the t distribution). Creating all the possibilities as arguments to

the LogDensity object is the responsibility of classes implementing the MCMCArgument interface.

2.3.2 The MCMCArgument Interface

The MCMCArgument interface, actually called ArgumentMaker in YADAS, is the source of this design’s ability

to define relatively easily statistical models made up of common pieces, while retaining the ability potentially

to define new models as well. The idea behind an MCMCArgument is to decompose the task of defining the

value of a bond b(θ), where θ denotes the nodes that are part of the bond b, into writing

b(θ) = &(A0(θ), . . . , AN(b)−1(θ)),

and defining the LogDensity function & and the MCMCArgument functions Aj . We have already seen the

example

&Gaussian(y, µ,σ) =
n−1∑

i=0

{− log σi − (yi − µi)2/2σ2
i }.

It remains to define MCMCArgument functions A0, A1, A2 so that, in a manner of speaking, A0(θ) = y,

A1(θ) = µ, and A2(θ) = σ.

MCMCArgument is an interface with the single method getArgument():

interface MCMCArgument {

double[] getArgument (double[][] params);

}

The getArgument() method takes an array of arrays of reals as input; these are potential values of each of

the nodes in the bond. The return value of the method is a (one-dimensional) array of outputs to be sent to

the LogDensity object. Here is a partial list of useful MCMCArgument objects.

• ConstantArgument. This class ignores the values of the parameters and always returns a predetermined

array of data, sometimes many copies of the same value, sometimes an array of different data points.

• IdentityArgument. This class returns one of the parameters unchanged.

• GroupArgument. This class is useful when, for example, many data points share the same mean. It

“expands” a short vector of parameters into a larger vector. For example, if yi ∼ N(µ,σ2) for 0 ≤ i < n,

then since the µ and σ parameters have length one, two GroupArgument objects are needed, the first

to create a vector of length n, each of whose elements is equal to the scalar µ, and another to do the
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same for σ. Creating a GroupArgument is very natural in S: if theta is a parameter and g is a vector

of group indices, the GroupArgument would calculate theta[g].

• FunctionalArgument. The purpose of a FunctionalArgument is to run one or multiple parame-

ters through an arbitrary function specified by the user, possibly after “expanding” them first as in

GroupArgument. A simple example of a functional argument is the case where normal data have stan-

dard deviations proportional to their means: in this case a FunctionalArgument first expands a scale

parameter to the length of the data, and then takes the absolute value of the product of this scale

parameter and the means.

• LinearModelArgument. The class LinearModelArgument defines linear models, including those with

both numeric and categorical variables. It also contains the capability for running the linear predictor

through an arbitrary (link) function. These arguments can then function as the mean or the standard

deviation in a normal linear model, or, if a different LogDensity is used, in a generalized linear model.

2.3.3 Other types of MCMCBond

A natural generalization of the BasicMCMCBond involves mixture distributions. Suppose that unknown pa-

rameters θ may satisfy one of several bond functions bi(θ), and the probability associated with the ith bond,

possibly also depending on unknown parameters, is wi(θ). The unnormalized posterior distribution will then

include the term
∑

i wi(θ)bi(θ). This design describes the bi using BasicMCMCBond objects, and the wi using

an additional MCMCArgument.

Another potentially useful construct is the PowerBond, in which a BasicMCMCBond is raised to a power

other than one, so that the posterior distribution contains a term b(θ)h(θ). PowerBond objects can be used

in importance sampling and simulated tempering (Geyer and Thompson, 1995).

2.4 Updates: steps in the MCMC algorithm

A versatile architecture for defining statistical models in MCMC software is not of much use unless there is

hope that the software can generate or help the user generate algorithms that can sample from the posterior

distribution reasonably efficiently. Algorithms in this design are defined to be arrays of objects implementing

the MCMCUpdate interface. Classes that implement this interface include MCMCParameter itself, with the result

that a default variable-at-a-time, random walk Metropolis algorithm can be constructed with no more effort

than listing the nodes. In some cases this default algorithm will lead to unacceptably high autocorrelations.

If so, other objects implementing MCMCUpdate can be added to the array of update steps to try to improve

the mixing.

10



The MCMCUpdate interface consists of one critical method:

interface MCMCUpdate {

public void update ();

}

A generic algorithm in this design is built by adding objects implementing MCMCUpdate to a collection, and

the algorithm is then run for one iteration by looping through the objects in the collection, calling the

update() method of each.

The YADAS implementation of the interface also includes the methods String accepted() and void

updateoutput(), which generate output related to acceptance rates of the algorithm, but these are not

critical to the design.

As described, the MCMCUpdate interface puts no restrictions on the algorithms that can be part of this

design but also provides no assistance in creating useful algorithms. Specific classes that implement the

interface are responsible for the diversity of useful algorithms.

2.4.1 MCMCParameter as an update

One class that implements MCMCUpdate is MCMCParameter itself. A parameter is an update in the sense

that an often useful step in an MCMC algorithm is to update a single scalar parameter by proposing a (for

example) Gaussian perturbation to it and accepting or rejecting using the Metropolis rule. The acceptance

probability for the move is calculated by calling the relevantBonds() method for the parameter discussed

in the MCMCNode section, and computing the sum of these bond values as a function of the current parameter

value and the proposed perturbation. Since an MCMCParameter in general consists of multiple scalar param-

eters (components), the implementation of its update() method loops over these components, attempting a

random walk Metropolis step for each, each with its own proposal standard deviation. Therefore, one can

define an algorithm trivially, by listing the names of all the parameters. In YADAS, the initial definition of

an MCMCParameter includes, along with an array of initial values, an array of nonnegative step sizes that are

used as the standard deviations of proposal distributions.

The MCMCParameter class also has some useful subclasses that are identical in functionality except

for their different update() methods. In particular, objects in the MultiplicativeMCMCParameter class

have positive values and update themselves with Gaussian random walk proposals on the log scale, while

LogitMCMCParameter objects have support on (0, 1) and make proposals on the logit scale. IntegerMCMCParameter

handles parameters whose possible values are a subset of the nonnegative integers: its update() method
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proposes a new value using a Gaussian random variable rounded to the nearest integer. If these classes are

used in an analysis, it is still possible to define an algorithm by listing all the nodes.

2.4.2 The MultipleParameterUpdate class

Individual updates to each scalar parameter can define an algorithm with which to start an analysis. These

algorithms can perform poorly when the posterior distribution features high correlations between parame-

ters. In some cases reparameterization solves this problem (see, for example, Gelfand and Sahu, 1999) but

this requires major changes to the MCMC code. Instead, one can use Metropolis or Metropolis–Hastings

updates in which multiple parameters and/or multiple components of individual parameters are updated

simultaneously; see Graves, Speckman and Sun (2005). This approach takes advantage of the software ar-

chitecture based on calculating posterior ratios. The MultipleParameterUpdate class facilitates defining

these additional steps: in the notation of §2.3.2, the user defines how to sample from a family of distributions

T (·|θ), and also how to calculate T (θ′|θ). The definition of a MultipleParameterUpdate is a set of MCMCNode

objects and an object implementing the Perturber interface. The Perturber interface is defined as follows:

interface Perturber {

void perturb (double[][] candarray, int whoseTurn);

int numTurns ();

double transitionDensityRatio ();

}

The Perturber object’s methods define how to sample from and calculate one or several Tj ’s. The perturb()

method accepts an array of arrays of current values θ of parameters, as well as an integer indicating which

Tj is to be attempted, and changes the elements in the array of arrays according to a sample θ′ from Tj(·|θ).

Note that depending on the programming language, it may not work to change the elements of the array in

place and the method may have to return the array itself rather than void. The method numTurns() returns

the number of distinct moves Tj that this MultipleParameterUpdate will attempt in a single iteration of the

MCMC algorithm, and the method transitionDensityRatio() calculates Tj(θ|θ′)/Tj(θ′|θ). Examples of

Perturber objects include adding a common constant to each component of a vector parameter and to the

scalar parameter that serves as the mean of the vector parameter. It is also possible to modify similarly the

scale of entire groups of parameters rather than their center. In regression problems where it is not possible

to center the data, one may wish to add a constant to the intercept α while simultaneously subtracting a

related constant from the slope β in order to keep α+ βx̄ constant, where x̄ is the average of the covariates.

If an unknown parameter {pi : 0 ≤ i < n} satisfies
∑

i pi = 1, its proposed updates must respect this

constraint, and SumToOnePerturber, whose i’th step proposes a Gaussian perturbation to pi on the logit
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scale and rescales the remaining pj accordingly, is one way to accomplish this.

2.4.3 Other MCMCUpdate’s

Another class of updates can be used when an updatable parameter has finite support. If this support is

finite, then FiniteUpdate can handle this case using a Gibbs step, by computing the posterior ratio for each

possible move of the parameter, and selecting the next value of parameter proportionally to these ratios. See

§3.1 for an example.

Another update featured in YADAS supports reversible jump MCMC (Green, 1995). Reversible jump

MCMC can be used when a parameter’s support is best thought of as a union of two or more spaces. The

ReversibleJumpUpdate class is used here: conceptually, this class requires a matrix of transition probabilities

for proposing moves between the spaces, and a matrix of proposed moves for each ordered pair of spaces.

The user also needs to supply transition density functions for these moves, so that use of this class is not as

automatic as in other classes.

2.4.4 UpdateTuner and TunableMCMCUpdate

The interface MCMCUpdate can be extended to make update steps self-tuning, for example by permitting

automatic tuning of proposal standard deviations. The current YADAS approach, described in Graves

(2005), uses the class UpdateTuner, which operates on objects implementing the TunableMCMCUpdate in-

terface. This approach features a trial stage that experiments with multiple step sizes and fits a logis-

tic regression to acceptance probability as a function of log(step size), then utilizes this estimated logis-

tic regression model to choose a step size corresponding to a target acceptance rate. This approach has

been used successfully with MCMCParameter, MultiplicativeMCMCParameter, LogitMCMCParameter and

MultipleParameterUpdate objects.

2.5 Output

In YADAS, MCMC output has been restricted to writing successive posterior samples to files for later

analysis with other software. Here a potential output is anything that can be done at the close of some or

all complete MCMC iterations. The definition for the interface MCMCOutput is

interface MCMCOutput {

public void output ();
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}

The most obvious example of an output is writing the latest posterior sample to a file; the class MCMCParameter

implements MCMCOutput and does exactly that. Another possibility is a class that periodically creates trace

plots of parameters. Also, a class implementing MCMCOutput could efficiently calculate mean and covariance

matrix estimates, and these could be fed back to an MCMCUpdate in an adaptive algorithm.

2.6 Running

After all the parameters, bonds, and updates in an application are defined, the remainder of the code in an

application is simple. The algorithm consists of looping over the array of MCMCUpdate objects, attempting

each update in each iteration. Most of these updates in turn loop over the bonds in order to calculate ratios

of values of the posterior distribution. After the last update of an iteration has been attempted, one sends

the current values of the parameters to output files. For a complete YADAS example, see the Appendix.

3 Examples

This section discusses two examples that illustrate some of the strengths of the design. First, in 3.1 discusses

estimating the prevalence of a binary characteristic in a population, where the prevalence varies across

manufactured lots, and where the data include both random sampling and convenience sampling from the

lots. This example illustrates how the design incorporates novel probability models and facilitates algorithms

with discrete parameters. The second example concerns analyzing the results of auto races under a rich family

of models for permutation data (§3.2), illustrating how the design is favorable for a sequence of analyses

under related models, and also how algorithms can be improved once poor mixing is identified.

3.1 Random and convenience sampling from lots

Consider the estimation of the fraction of items in a finite population that have a certain feature; see Graves

et al (2003). The items were manufactured in lots. To indicate that presence or absence of the feature is

potentially related to lot membership, let pi be the probability that an item manufactured in lot i contains

the feature, and assume that the pi’s come from a Beta(a, b) distribution, where a and b are also to be

estimated. Items were sampled from some of the lots and inspected to determine whether they contained the

feature, but the sampling proceeded in two phases, and only the second phase generated random samples

within the lots. The first “convenience” sample was nonrandom, and the selection mechanism may not have
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been independent of the presence or absence of the feature. For this reason, the samples were analyzed using

the extended hypergeometric distribution. Let Ni be the number of items in lot i, suppose that Ki of these

items contain the feature, where Ki has a binomial distribution with parameters Ni and pi, and suppose

that the size of the ith convenience sample was nC
i . Let θ be a parameter that measures the extent to which

items with the feature are more likely to be sampled than items without (“bias”). Then the probability

distribution for yC
i , the number of items inspected in the convenience sample that contain the feature, is

f(y;Ni, n
C
i ,Ki, θ) =



 nC
i

y







 Ni − nC
i

Ki − y



 exp(θy)

∑min(nC
i ,Ki)

j=max(0,nC
i −Ni+Ki)



 nC
i

j







 Ni − nC
i

Ki − j



 exp(θj)

,

for y = max(0, nC
i − Ni + Ki), . . ., min(nC

i ,Ki).

This reduces to the hypergeometric distribution when θ = 0, and when θ > 0, items with the feature

are more likely to be sampled. A N(0, 1) prior on θ allows for the possibility that the sampling was biased

without assuming a direction for the bias. The extended hypergeometric distribution (Harkness, 1965) also

arises in the power function for Fisher’s exact test for 2× 2 tables. The randomly sampled data, taken from

what remains after the convenience samples, are then modeled using the hypergeometric distribution.

The parameters of most interest are the Ki’s, because from them, one can derive the number of features in

the uninspected part of the population. The potentially challenging aspects of this problem are the extended

hypergeometric density and the discrete support of the main parameters of interest. Using this software

design, however, this problem is not difficult. The ExtendedHypergeometric class created for this problem

implements the LogDensity interface, so that it defines a compute() method that when called with vector

arguments y,N, n,K, and θ, returns
∑

i log f(yi;Ni, ni,Ki, θi). The randomly sampled data also highlight

the MCMCArgument construct: the unknown number of features available to be sampled randomly is a function

Ki − yC
i of the unknown parameters Ki, and these numbers are computed using a FunctionalArgument

and then sent to the ordinary hypergeometric LogDensity: there is no need for a version suitable for two

phases of sampling. Finally, the Ki are sampled using the FiniteUpdate class, which implements the

MCMCUpdate interface, and samples from the complete conditional distributions of parameters whose support

is {0, 1, . . . , S − 1}, where S is some positive integer. This design is conveniently set up to do this, since it is

based on computing terms like ri = f(i)/f(s0), where f(·) denotes the unnormalized posterior evaluated at

the value of the discrete parameter and where s0 is the current value. Sampling the new value of the discrete

parameter with probabilities proportional to the ri is then exactly a Gibbs step for this parameter. Another

option for sampling discrete parameters is the IntegerMCMCParameter class, a subclass of MCMCParameter,

which implements a Metropolis step where the proposed value of the discrete parameter is a discretized

15



Gaussian step from the current value and doesn’t compute all possible moves, some of which may be very

unlikely.

3.2 Auto racing results

A second example that illustrates families of analyses using of a single new LogDensity object involves

analysis of auto racing results. Graves, Reese, and Fitzgerald (2003) present a family of models for permu-

tations that depend on ability parameters for each driver; the individual models differ in the structure of

the ability parameters and estimate interactions between drivers and various factors. The basic model is as

follows. Suppose n drivers participate in a race. Let the ability of the ith driver be denoted by θi, where the

θi’s have an independent mean zero normal distribution with unknown variance. The probabilistic model

(the “attrition model”) determines finishing order conditional on ability parameters by choosing the last

place finisher with probability proportional to λi = exp(−θi), choosing the second-to-last finisher among

the remaining drivers with probabilities still proportional to λi, and continuing until two drivers i1 and i2

have been determined to finish first and second; driver i1 wins with probability λi2/(λi1 + λi2). To analyze

many races simultaneously, assume that driver i has ability θij in race j, and let λij = exp(−θij). Let πj be

defined so that πj(k) = i means that driver i finished in kth place in race j; then the likelihood function is

P (π|λ) =
J∏

j=1

Ij∏

i=1

λπj(i),j

(
i∑

k=1

λπj(k),j

)−1

. (1)

Interesting ways of parameterizing θij include θij = θi (driver abilities are constant over all races) and

assuming that driver abilities are changing linearly in time. One may also study the extent to which some

tracks are more predictable than others (i.e., θij = θiφT (j), with large values of the positive parameter φt

implying that results at track t are highly predictable). We also studied the possible existence of track-driver

interactions: each track-driver combination (i, t) leads to a different parameter Ωit, with the Ωit’s distributed

around an overall driver ability θi. One may also propose regression relationships based on track properties

like speed, length, and amount of banking.

Using this software design, one studies all these models using a single object implementing the LogDensity

interface called AttritionLikelihood, which stores a vector of race numbers and a vector of finish positions,

and takes two arguments corresponding to a vector of θ’s parameterizing driver abilities (these can depend

on properties of the race) and a vector of φ’s parameterizing the predictability of the races (most often, these

φ’s are identically one). AttritionLikelihood then computes the log of the probability (1), conditional on

the unknown parameters. The θ and φ vectors can easily be constructed using objects implementing the

MCMCArgument interface, typically GroupArgument objects.
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The auto racing MCMC algorithms have also benefited from some special update steps. For example,

suppose that the prior distribution for the θ’s is independent N(0, γ2), and γ has a gamma hyperprior

distribution. Then γ and the sample standard deviation of the θ’s are highly correlated, and the param-

eter γ can mix slowly. An algorithm with better mixing with respect to γ can be obtained by adding a

MultipleParameterUpdate where the proposed move is T (θ1, . . . , θN , γ) = (θ̄+c(θ1−θ̄), . . . , θ̄+c(θN−θ̄), cγ),

where θ̄ = N−1
∑N

1 θj and where c is chosen lognormally. Augmenting algorithms with moves like these is

easy, as it amounts to composing appropriate Perturber functions.

3.3 Other possibilities

This design has been utilized experimentally in a wide variety of problems and in different algorithms. These

analyses and algorithms have not all been complete successes from a scientific or algorithmic perspective,

but they illustrate the potential of the design. Examples include reliability of complex systems with different

data models for each component (Johnson et al, 2003; Graves and Hamada, 2005); modeling of symptom

counts using a fixed seasonal shape but hierarchical models for the baseline, amplitude, and peak location

(Graves and Picard, 2002); flexible models for edge presence in random graphs; software reliability with a

hierarchical model on parameters with mixture distributions; simulated tempering as in Geyer and Thompson

(1995); LogDensity and MCMCArgument objects that use sufficient statistics for several linear regression

models; Gaussian spatial process models; discretely supported parameters sampled using continuous versions;

arguments defined using kernel smoothing; path sampling (Gelman and Meng, 1998); and approximations

of parameter-expanded data augmentation (Meng and van Dyk, 1999; Liu and Wu, 1999)) and alternating

subspace-spanning resampling (Liu, 2003).

4 Related Work

Several general–purpose MCMC tools are available. First, the free, versatile, and usable package BUGS

(Spiegelhalter et al, 1996) deserves special notice. This package has an intuitive language (as well as a

graphical user interface) for expressing models, and does not require (or allow) the user to specify an algorithm

with which to attack a problem. In the author’s opinion, if a problem can be handled by BUGS, then as

of today one should normally use BUGS to solve it. An open source implementation called OpenBugs (see

http://mathstat.helsinki.fi/openbugs/) is intended to become the standard version. JAGS (Plummer,

2003) is an open-source emulation of BUGS written intended to be an extensible experimentation platform.

MLwiN (Rasbash et al, 2000) is another package with many features including a graphical user interface

and graphical diagnostics. This package supports classical analyses as well as MCMC. Most of their examples
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are hierarchical generalized linear models, admittedly a large and useful class of problems, but it does not

appear to be straightforward for users to extend the capabilities of the package. MLwiN is not free.

Bassist (Toivonen et al, 1999) is another good package; unfortunately, it appears that it is no longer

being supported. It converts code written using a model description language into C++ code. It has good

extensibility since it can use C++ functions to define model parameters, but it is limited in its capability

for generating different sorts of MCMC algorithms.

HYDRA (Warnes, 2002) is also written in Java and distributed under the open-source model. It does not

seem to have any limits to its extensibility, but neither does it provide classes that make it easy to specify

new models (one has to define the posterior distribution from scratch) or to define new MCMC algorithms,

although several special algorithms are included.

Flexible Bayesian Modeling (FBM) is a set of UNIX based tools for many sorts of Bayesian regression

models. See Neal (2003).

Many excellent R packages (R Development Core Team, 2005) include special–purpose Bayesian analysis

code. Several packages aspire to greater generality. Kerman (2006)’s Umacs is promising: the user needs

to define most of the details of each parameter’s updating mechanism which can be either a Gibbs or a

vector or scalar Metropolis step, and Umacs runs the sampler, monitors acceptance rates and thereby tunes

proposal kernels. Also, Geyer (2005) provides the mcmc package, which features the beginnings of a general

MCMC framework, accepting arbitrary unnormalized densities and arbitrary proposal covariance matrix.

Martin and Quinn (2005) features MCMC algorithms for many models and includes a general random walk

Metropolis function.

5 Discussion

The design ideas discussed in this paper have been useful in many analyses. Areas for future work include the

development of an error handling interface. Implementation of these design ideas in other languages could

expand their use. Also, a long-term goal of the YADAS project is to have software that will automatically

generate acceptable algorithms for as many problems as possible, so that the user’s responsibility is only to

define the model. The design’s decoupling of the algorithm from the model is an important step toward this

goal. The goal is remote at this point, so the software supports the user in defining his or her own algorithms

and experimenting with them: the design should support an environment for research into new methods for

improving mixing in MCMC.
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Appendix: Example of YADAS code

YADAS is a collection of Java classes. The YADAS source code, a tutorial, examples, and supporting

documents are available for download at yadas.lanl.gov. Below is code for a simple YADAS analysis

(estimation of the group means and variance components in a one-way analysis of variance). As mentioned

earlier, ArgumentMaker is the YADAS name for the concept MCMCArgument discussed in this paper. This

code is contained in a file called OneWayAnova.java and compiled into a class called OneWayAnova.class.

The code’s five stages are described below.

import gov.lanl.yadas.*;
public class OneWayAnova {
public static void main (String[] args) {

MCMCAnalysis mcmc = new MCMCAnalysis ("~/analyses/onewayexample/");
// 1. Assemble input sources
DataFrame d, d2; ScalarFrame d0;
mcmc.addInput (d = new DataFrame ("data.dat"));
mcmc.addInput (d2 = new DataFrame ("mu.dat"));
mcmc.addInput (d0 = new ScalarFrame ("scalars.dat"));

// 2. Define unknown parameters
MCMCParameter mu, theta, sigma, delta;
mcmc.addNode (mu = new MCMCParameter (d2.r("mu"), d2.r("m_ss"), "mu"));
mcmc.addNode (theta = new MCMCParameter (d0.r("theta"), d0.r("t_ss"), "theta"));
mcmc.addNode (sigma = new MCMCParameter (d0.r("sigma"), d0.r("s_ss"), "sigma"));
mcmc.addNode (delta = new MCMCParameter (d0.r("delta"), d0.r("d_ss"), "delta"));

// 3. Define model
mcmc.addBond ( new BasicMCMCBond

( new MCMCParameter[] { mu, sigma },
new ArgumentMaker[]

{ new ConstantArgument (d.r("y")),
new GroupArgument (0, d.i("group")),
new GroupArgument (1, d.i(0)) },

new Gaussian () ));
mcmc.addBond ( new BasicMCMCBond

( new MCMCParameter[] { mu, theta, delta },
new ArgumentMaker[]

{ new IdentityArgument (0),
new GroupArgument (1, d2.i(0)),
new GroupArgument (2, d2.i(0)) },

new Gaussian () ));
mcmc.addBond ( new BasicMCMCBond

( new MCMCParameter[] { sigma },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (d0.r("asigma")),
new ConstantArgument (d0.r("bsigma")) },

new Gamma () ));
mcmc.addBond ( new BasicMCMCBond

( new MCMCParameter[] { delta },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (d0.r("adelta")),
new ConstantArgument (d0.r("bdelta")) },

new Gamma () ));

// 4. Define algorithm
mcmc.addUpdates ( new MCMCUpdate[] { mu, theta, sigma, delta } );

19



// 5. Define output
mcmc.addOutputs ( new MCMCOutput[] { mu, theta, sigma, delta } );

mcmc.iterate (10000);
mcmc.finish ();
}

}

The first stage of the code defines inputs to the analysis: two DataFrame objects, one (d) containing

the N data points and group labels, and one (d2) containing information about the K group means, and

another input file d0 containing scalar inputs. Second, define four unknown parameters: the multivariate

parameter µ and the three scalar parameters θ,σ, and δ, assigning their initial values, step sizes, and output

file names. The third step is to define the unnormalized posterior distribution. The four successive bond

definitions mean, respectively,

1. for i = 0, . . . , N − 1, yi ∼ N(µgi ,σ
2), where g is an array of group labels;

2. for k = 0, . . . ,K − 1, µk ∼ N(θ, δ2);

3. σ ∼ Γ(aσ, bσ);

4. δ ∼ Γ(aδ, bσ).

Implicitly, θ has a flat prior. The fourth stage of the code defines the algorithm: in this case, it is the

default variable-at-a-time Metropolis algorithm. The fifth stage defines the default output mechanism: each

parameter will generate a text file of MCMC samples.
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